Large Language Models (LLMs) like OpenAI ChatGPT are called foundational models because even though they are trained for a relatively small set of tasks, they work exceptionally well for multiple unseen downstream tasks. While there is still some debate on how they are so good, at a high level it is quite easy to under what they do — they just predict the next word (read tokens). And all the cool tools you see built using these models, are nothing but the smart application of this feature.
Imagine you have a lot of text data inside your database. And you want to extract insights to analyze it or perform various AI tasks on text data. In this article, you will learn how to use MindsDB to integrate your database with OpenAI GPT-3 and get insights from all your text data at once with a few SQL commands instead of making multiple individual API calls, ETL-ing and moving massive amounts of data.
Finance NLP is a John Snow Lab’s product, launched 2022 to provide state-of-the-art, autoscalable, domain-specific NLP on top of Spark. With more than 100 models, featuring Deep Learning and Transformer-based architectures
Link
In this guide, I share my analysis of the current architectural best practices for data-informed language model applications. This particular subdiscipline is experiencing phenomenal research interest even by the standards of large language models - in this guide, I cite 8 research papers and 4 software projects, with a median initial publication date of November 22nd, 2022.
Link
The purpose of this repository is to let people to use lots of open sourced instruction-following fine-tuned LLM models as a Chatbot service. Because different models behave differently, and different models require differently formmated prompts, I made a very simple library Ping Pong for model agnostic conversation and context managements.
Link
Text2Diagram: Create schematic architecture diagrams, UML, flowcharts, Gnatt charts, mind maps, Sequence diagrams, User Journey and many more with natural language.
Link
A curated (still actively updated) list of practical guide resources of LLMs. It’s based on our survey paper: Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond and efforts from @xinyadu. The survey is partially based on the second half of this Blog. We also build an evolutionary tree of modern Large Language Models (LLMs) to trace the development of language models in recent years and highlights some of the most well-known models.
At present, our core contributors are preparing the 65B version and we expect to empower WizardLM with the ability to perform instruction evolution itself, aiming to evolve your specific data at a low cost.
Link