There are many well-known libraries and platforms for data analysis such as Pandas and Tableau, in addition to analytical databases like ClickHouse, MariaDB, Apache Druid, Apache Pinot, Google BigQuery, Amazon RedShift, etc.
Link
There is a proverb “You don’t have to reinvent the wheel”. Libraries are the best example of that. It helps you to write complex and time-consuming functionality in an easy way. According to me, a good project uses some of the best libraries available.
Link
Daft is currently in its Alpha release phase - please expect bugs and rapid improvements to the project. We welcome user feedback/feature requests in our Discussions forums.
Link
Hypothesis is a Python library for creating unit tests which are simpler to write and more powerful when run, finding edge cases in your code you wouldn’t have thought to look for. It is stable, powerful and easy to add to any existing test suite.
Link
Modin is a drop-in replacement for pandas. While pandas is single-threaded, Modin lets you instantly speed up your workflows by scaling pandas so it uses all of your cores. Modin works especially well on larger datasets, where pandas becomes painfully slow or runs out of memory.
Link